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Abstract: Solving for the dynamics of multi-body collision processes is a fundamentally difficult 
challenge in robotics, autonomous systems, and computer graphics. Classical physics simulators are 
computationally expensive, and only data-driven methods risk giving rise to violations of physical 
laws. We propose a new physics-informed graph neural network (PI-GNN) framework that leverages 
the representational ability of graph networks together with explicit physical principles for accurate 
and physically plausible trajectory prediction. Our model builds dynamic graphs, where objects are 
regarded as nodes and pairwise interactions are used to generate edges by multi-head attention 
modules. Through physics-based loss terms for energy conservation, momentum conservation, and 
collision constraints, the model attains 75.2% overall accuracy and achieves 71.8% physics-compliant 
performance across various scenarios. Experiments show up to 134%, 166%, and 154% 
improvements in energy, momentum, and overall efficiency over the baseline methods after simulator 
corrections. The model is able to generalize over different configurations, from simple two-body 
collisions up to complex five-body interactions, preserving physical coherence and reaching real-time 
inferential speed. Our model provides a stable basis for physics-based learning in dynamical systems. 

1. Introduction 
The precise prediction of how certain objects in a scene will collide is essential for many 

applications, such as robotics manipulation, autonomous vehicle planning, video game physics 
engines, and molecular dynamics simulators. Classical approaches are based on analytical physics 
simulators, which can be very accurate but are computationally intensive at scale for applications 
involving many interacting objects. Most recent advances in deep learning seem to be promising 
alternatives; however, pure data-driven modeling typically gives physically unrealistic predictions 
that break basic principles, such as conservation laws. 

The difficulty stems from the need to construct models that are computationally cheap and 
physically sound. Graph Neural Networks (GNNs) are powerful models for relational data, making 
them natural for application in a multi-outline system where objects interact through pairwise forces. 
Nevertheless, conventional GNNs are not naturally equipped with physical principles and may risk 
violating fundamental conservation laws. This provides motivation to develop physics-informed 
architectures that incorporate domain knowledge explicitly into the model. 

1.1. Research Contributions 
We address these limitations through several key contributions. First, we present a novel GNN 

framework incorporating explicit physics constraints through multi-objective loss functions that 
enforce energy conservation, momentum conservation, and collision physics, as illustrated in Figure 
1. Second, we develop a systematic approach to training across diverse scene complexities, from 
simple two-body collisions to complex five-body interactions. Third, we provide rigorous assessment 
across multiple metrics including prediction accuracy, physics law compliance, and scenario-specific 
performance. Finally, we identify and correct critical simulator bugs, leading to 134% improvement 
in energy conservation and 166% in momentum conservation. 
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Our experimental results demonstrate that PI-GNN achieves 82.3% accuracy on simple collisions, 
71.4% on multi-body scenarios, and 64.5% on complex five-body interactions, while maintaining 
73.4% energy conservation and 69.8% momentum conservation across all test cases. These results 
represent significant advances over baseline methods and validate the effectiveness of incorporating 
physics constraints into neural architectures. 

1.2. Paper Organization 
The remainder of this paper is organized as follows. Section 2 reviews related work on graph 

neural networks for physics, physics-informed neural networks, and learning collision dynamics. 
Section 3 details our methodology, including problem formulation, graph representation, network 
architecture, attention mechanism, and physics-informed loss function. Section 4 presents our 
experimental setup and results, including quantitative evaluation, physics compliance analysis, 
ablation studies, qualitative analysis, and generalization experiments. Section 5 discusses the 
implications and limitations of our approach, and Section 6 concludes the paper. 

 
Figure 1. Physics-informed architecture overview showing the integration of GNN with 

conservation laws. 

2. Related Work 
2.1. Graph Neural Networks for Physics 

In recent years, Graph Neural Networks (GNNs) have been successfully used for modeling 
physical systems [1]. The interaction networks introduced a novel concept in the deep learning for 
physics community, using graph representations to learn physical dynamics, and showed that 
relational inductive biases are important for modeling systems with interacting particles [1]. Graph 
Network Simulator generalized this technique with learned message passing for particle systems and 
reported very promising results on fluid dynamics and granular materials [2]. However, these methods 
rarely incorporate explicit physics constraints and suffer from long-term prediction drift, where small 
errors accumulate over time, resulting in physically unrealistic states. 

2.2. Physics-Informed Neural Networks 
Physics-Informed Neural Networks (PINNs) use differential equations as loose constraints for the 

training algorithms to ensure the models respect physical laws [5]. The Hamiltonian Neural Networks, 
by design, conserve energy using carefully chosen architectures that encode the structure of 
symplectic systems [3]. Lagrangian Neural Networks encode physical symmetries and conservation 
laws by the principle of least action [4]. Although effective for systems with known governing 
equations, these methods cannot handle the more complicated collision dynamics, which entail 
discontinuous contact forces and rapid topology changes. 
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2.3. Learning Collision Dynamics 
Existing work on learning-based prediction for collisions includes virtual physics engines that use 

convolutional neural networks to predict in pixel space [6], as well as approaches that combine 
learned models with analytical solvers. These techniques show great potential, but they have problems 
with both scalability and physical realism. Our method differs by directly encoding relations through 
graphs and integrating physics constraints into the loss function, making it possible to predict 
accurately while respecting physicality. 

3. Methodology 
3.1. Problem Formulation 

We consider a scene with N objects in two-dimensional Euclidean space ℝ². At time t, the state of 
object i is characterized by its position pᵢ(t) = [xᵢ(t), yᵢ(t)]ᵀ ∈ ℝ², velocity vᵢ(t) = [vₓᵢ(t), vᵧᵢ(t)]ᵀ ∈ ℝ², 
mass mᵢ ∈ ℝ⁺, and radius rᵢ ∈ ℝ⁺. The complete system state at time t is represented as: 

S(t) = {(pᵢ(t), vᵢ(t), mᵢ, rᵢ)}ᵢ₌₁ᴺ                                          (1) 
Given the initial state S(0) at t = 0, our objective is to predict the future trajectory sequence: 

T = {S(tₖ)}ₖ₌₁ᵀ                                                             (2) 
where tₖ = k·Δt for discrete timesteps with Δt = 0.1s, and T = 50 is the prediction horizon. 
The dynamics of each object follow Newton's second law in the absence of collisions: 

mᵢ d²pᵢ/dt² = Fᵢ = Σⱼ≠ᵢ Fᵢⱼ                                                    (3) 
where Fᵢⱼ represents the force exerted by object j on object i. For elastic collisions, we apply the 

impulse-momentum theorem at contact: 
Jᵢⱼ = -Jⱼᵢ = -(1 + e)mᵣ(vᵣₑₗ · nᵢⱼ)nᵢⱼ                                          (4) 

where e ∈ [0,1] is the coefficient of restitution, mᵣ = (mᵢmⱼ)/(mᵢ+mⱼ) is the reduced mass, vᵣₑₗ = vᵢ 
- vⱼ is the relative velocity, and nᵢⱼ = (pⱼ - pᵢ)/||pⱼ - pᵢ|| is the collision normal vector. Figure 2 illustrates 
a typical two-body collision scenario with the corresponding velocity and position vectors. 

 
Figure 2. Illustration of two-body collision scenario with velocity and position vectors. 

3.2. Graph Representation 
We encode the scene as a dynamic graph G = (V, E, X, E) where vertices V = {vᵢ}ᵢ₌₁ᴺ represent 
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objects with node features xᵢ = [pᵢ; vᵢ; mᵢ; rᵢ] ∈ ℝ⁶, and edges E = {(i,j) | i,j ∈ V, i ≠ j} encode pairwise 
interactions with edge features eᵢⱼ = [dᵢⱼ; θᵢⱼ] ∈ ℝ², where dᵢⱼ = ||pᵢ - pⱼ|| is the Euclidean distance and 
θᵢⱼ = arctan2(yⱼ - yᵢ, xⱼ - xᵢ) is the relative angle. The resulting dynamic graph structure is depicted in 
Figure 3. 

 
Figure 3. Dynamic graph representation where nodes represent objects and edges encode 

interactions. 

3.3. Graph Neural Network Architecture 
Our GNN processes the graph through L = 3 layers, each performing message passing and 

aggregation. At layer ℓ, the hidden representation of node i is updated as hᵢ⁽ˡ⁺¹⁾ = UPDATE⁽ˡ⁾(hᵢ⁽ˡ⁾, mᵢ⁽ˡ⁾), 
where hᵢ⁽ˡ⁾ ∈ ℝᵈ is the hidden state (d = 128), and mᵢ⁽ˡ⁾ is the aggregated message. The complete 
architecture is shown in Figure 4. 

 
Figure 4. GNN architecture showing message passing and aggregation layers. 

3.4. Multi-Head Attention Mechanism 
We employ multi-head attention to compute adaptive interaction weights. For K = 8 attention 

heads, the message function utilizes learned query and key projection matrices to compute attention 
weights that determine the importance of each pairwise interaction. This mechanism allows the model 
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to dynamically focus on the most relevant interactions for each object at each timestep. 

3.5. Physics-Informed Loss Function 
Our training objective combines prediction accuracy with physics constraints through a multi-

component loss function that enforces energy conservation, momentum conservation, and collision 
constraints. The total loss is a weighted combination of these terms, ensuring both accurate 
predictions and physical plausibility. The individual loss components and their contributions during 
training are visualized in Figure 5. 

 
Figure 5. Visualization of loss function components and their contributions during training. 

4. Experiments 
4.1. Experimental Setup 

We evaluate our model on a comprehensive dataset of collision scenarios ranging from simple 
two-body interactions to complex five-body systems. The dataset contains 50,000 training samples 
and 10,000 test samples, generated using a physics simulator with varying initial conditions including 
object masses, velocities, and positions. All experiments are conducted using PyTorch on an NVIDIA 
RTX 3090 GPU. Figure 6 presents the training and validation curves showing model convergence. 

 
Figure 6. Training and validation curves showing convergence of the model. 

4.2. Quantitative Results 
Our model achieves 75.2% overall accuracy and 71.8% physics-compliant performance across 

various scenarios. The results demonstrate significant improvements over baseline methods in both 
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prediction accuracy and physics law compliance. Figure 7 presents detailed performance metrics 
across different collision scenarios. 

 
Figure 7. Performance comparison between PI-GNN and baseline methods across different metrics. 

4.3. Physics Compliance Analysis 
We analyze the model’s adherence to conservation laws through detailed energy and momentum 

tracking. After identifying and correcting simulator bugs, our model demonstrates 134% 
improvement in energy conservation and 166% improvement in momentum conservation compared 
to the baseline, as shown in Figure 8. These corrections highlight the importance of accurate ground 
truth data for physics-informed learning. 

 
Figure 8. Energy and momentum conservation analysis showing improvements after simulator 

corrections. 

4.4. Ablation Studies 
To understand the contribution of each component, we conduct comprehensive ablation studies. 

We systematically remove physics constraints, attention mechanisms, and architectural components 
to assess their individual impact on model performance. The results, presented in Figure 9, confirm 
that each component contributes significantly to the overall performance. 

 
Figure 9. Ablation study results showing the impact of different components on model performance. 
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4.5. Qualitative Analysis 
Visual inspection of predicted trajectories reveals that our model captures complex collision 

dynamics with high fidelity, as demonstrated in Figure 10. The model successfully predicts multi-
body interactions, maintains physical plausibility over long prediction horizons, and demonstrates 
robust generalization to unseen scenarios. 

 
Figure 10. Visualization of predicted trajectories compared to ground truth. 

4.6. Generalization to Complex Scenarios 
We evaluate the model’s ability to generalize from simple two-body collisions to complex five-

body interactions. The results, illustrated in Figure 11, demonstrate that the model maintains 
reasonable performance even on scenarios significantly more complex than those seen during training, 
validating the effectiveness of our physics-informed approach. 

 
Figure 11. Performance across different scenario complexities from two-body to five-body 

interactions. 

5. Discussion 
Our physics-informed graph neural network successfully combines the representational power of 

deep learning with explicit physical constraints, achieving both high prediction accuracy and physics 
compliance. The multi-head attention mechanism enables the model to dynamically focus on relevant 
interactions, while the physics-informed loss ensures adherence to fundamental conservation laws. 

The identification and correction of simulator bugs highlights an important consideration for 
physics-informed learning: the quality of ground truth data directly impacts model performance. Our 
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improvements of 134% and 166% in energy and momentum conservation after simulator corrections 
demonstrate that even subtle errors in the training data can significantly degrade physics compliance. 
Figure 12 presents the distribution of prediction errors across different scenarios. 

 
Figure 12. Error analysis showing distribution of prediction errors across different scenarios. 

5.1. Limitations 
While our model demonstrates strong performance, several limitations remain. First, the model is 

currently limited to 2D scenarios and would require architectural modifications for 3D collision 
prediction. Second, computational complexity scales quadratically with the number of objects due to 
the fully-connected graph structure. Third, the model assumes elastic collisions and does not 
explicitly handle friction or other dissipative forces. 

5.2. Future Work 
Future research directions include extending the framework to 3D scenarios, incorporating 

additional physical phenomena such as friction and deformation, and exploring more efficient graph 
structures for large-scale systems. Additionally, investigating the integration of learned physics 
constraints with differentiable physics engines could further improve both accuracy and 
computational efficiency. Figure 13 summarizes the key results comparing PI-GNN with baseline 
approaches. 

 
Figure 13. Summary of key results comparing PI-GNN with baseline approaches. 
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6. Conclusion 
We present a physics-informed graph neural network for multi-body collision prediction that 

achieves 75.2% overall accuracy while maintaining 71.8% physics compliance. Our framework 
successfully combines data-driven learning with explicit physical constraints through a multi-
objective loss function that enforces energy conservation, momentum conservation, and collision 
physics. Experimental results demonstrate significant improvements over baseline methods, with up 
to 166% better momentum conservation after simulator corrections. 

The model generalizes effectively across different scenario complexities, from simple two-body 
collisions to complex five-body interactions, while maintaining physical plausibility and achieving 
real-time inference speed. Our work provides a solid foundation for physics-informed learning in 
dynamical systems and demonstrates the importance of integrating domain knowledge into neural 
network architectures. 
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Appendix A: Network Architecture Details 
This appendix provides detailed specifications of the network architecture including layer dimensions, 
activation functions, and parameter counts for each component of the model. Figure 14 shows the 
detailed network architecture with all layers and connections. Figure 15 presents the distribution of 
parameters across different network components. Figure 16 displays the learned attention patterns 
showing interaction priorities, and Figure 17 visualizes the learned features at different network layers. 
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Figure 14. Detailed network architecture showing all layers and connections. 

 
Figure 15. Distribution of parameters across different network components. 

 
Figure 16. Learned attention patterns showing interaction priorities. 

 
Figure 17. Visualization of learned features at different network layers. 

390


	1. Introduction
	1.1. Research Contributions
	1.2. Paper Organization

	2. Related Work
	2.1. Graph Neural Networks for Physics
	2.2. Physics-Informed Neural Networks
	2.3. Learning Collision Dynamics

	3. Methodology
	3.1. Problem Formulation
	3.2. Graph Representation
	3.3. Graph Neural Network Architecture
	3.4. Multi-Head Attention Mechanism
	3.5. Physics-Informed Loss Function

	4. Experiments
	4.1. Experimental Setup
	4.2. Quantitative Results
	4.3. Physics Compliance Analysis
	4.4. Ablation Studies
	4.5. Qualitative Analysis
	4.6. Generalization to Complex Scenarios

	5. Discussion
	5.1. Limitations
	5.2. Future Work

	6. Conclusion
	Acknowledgements
	References
	Appendix A: Network Architecture Details



